Tuesday, May 28, 2013
MCP3208 ADC function bug found!
It took me 2 hours to find the bug. I did not understand why even channels OK, but odd do not. And if I start with odd channels, then opposite is true. After a couple of guesses, I finally decided to print out the MCP3208 output. Then I realized that I take for granted that the Question mark bits in return byte one for some reason depends on the first address.
So when I crop off the most significant 3 bits of byte 1, then everything goes well.
resultDecimal = ((resultTripleByte[1] & 0x0f) * (2 ** 8)) + (resultTripleByte[2])
The lesson learned is to respect the question mark bits in MicroChip's datasheet!
pi@raspberrypi ~/fongtoy $ sudo python fongtoy.py
*** Start Program - FongToy v1.26 tlfong01 2013may28 ***
*** Start testing MCP3208 ADC ***
ADC output byte 0 = 00000010
ADC output byte 0 = 00001001
ADC output byte 0 = 11000010
resultDecimal = 2498
Analog voltage at channel number 1 = 2.498
ADC output byte 0 = 11111111
ADC output byte 0 = 11101001
ADC output byte 0 = 11000010
resultDecimal = 2498
Analog voltage at channel number 3 = 2.498
ADC output byte 0 = 11111111
ADC output byte 0 = 11101001
ADC output byte 0 = 11000011
resultDecimal = 2499
Analog voltage at channel number 5 = 2.499
*** Stop testing MCP3208 ***
*** Stop Program ***
# ftadc.py v1.4 tlfong01 2013may27
import spidev
import time
import ftprint
import ftspi
# *****************************************************************************
# Function - TestAdcMcp3208
# *****************************************************************************
def TestMcp3208v03(): # v0.3 tlfong01 2013may28
ftprint.PrintDoubleSpaceLine("*** Start testing MCP3208 ADC ***")
spiChannel = spidev.SpiDev()
spiChannel.open(0, 1)
SingleEndMode = 0
DifferentialMode = 1
SingleEndModeFirstByte = 0x06
DifferentialModeFirstByte = 0x04
controlTripleByte = [0x00, 0x00, 0x00]
resultTripleByte = [0x00, 0x00, 0x00]
for channelNumber in range(1, 7, 2):
controlTripleByte[0] = SingleEndModeFirstByte | (channelNumber >> 2)
controlTripleByte[1] = channelNumber << 6
controlTripleByte[2] = 0x00 # don't care, actually
resultTripleByte = spiChannel.xfer2(controlTripleByte)
ftprint.PrintEightBitPattern("ADC output byte 0 = ", resultTripleByte[0])
ftprint.PrintEightBitPattern("ADC output byte 0 = ", resultTripleByte[1])
ftprint.PrintEightBitPattern("ADC output byte 0 = ", resultTripleByte[2])
resultDecimal = ((resultTripleByte[1] & 0x0f) * (2 ** 8)) + (resultTripleByte[2])
print "resultDecimal = ", resultDecimal
resultVoltage = (float(resultDecimal) / 4096) * 4.096
print "Analog voltage at channel number ", channelNumber, " = ", resultVoltage
spiChannel.close()
ftprint.PrintDoubleSpaceLine("*** Stop testing MCP3208 ***")
def TestMcp3208v02(inputMode, channelNumber): # v0.2 tlfong01 2013may28
# ftprint.PrintDoubleSpaceLine("*** Start testing MCP3208 ADC ***")
spiChannel = spidev.SpiDev()
spiChannel.open(0, 1)
time.sleep(0.1)
CommonMode = 0
DifferentialMode = 1
SingleEndModeFirstByte = 0x06
DifferentialModeFirstByte = 0x04
controlTripleByte = [0x00, 0x00, 0x00]
resultTripleByte = [0x00, 0x00, 0x00]
controlTripleByte[0] = SingleEndModeFirstByte | (channelNumber >> 2)
controlTripleByte[1] = channelNumber << 6
controlTripleByte[2] = 0x00 # don't care, actually
resultTripleByte = spiChannel.xfer2(controlTripleByte)
# ftprint.PrintEightBitPattern("ADC output byte 0 = ", resultTripleByte[0])
# ftprint.PrintEightBitPattern("ADC output byte 1 = ", resultTripleByte[1])
# ftprint.PrintEightBitPattern("ADC output byte 2 = ", resultTripleByte[2])
resultDecimal = (resultTripleByte[1] * (2 ** 8)) + (resultTripleByte[2])
resultVoltage = (float(resultDecimal) / 4096) * 4.096
print "Analog voltage at channel number ", channelNumber, " = ", resultVoltage
resultDecimal = (resultTripleByte[1] * (2 ** 8)) + (resultTripleByte[2])
resultVoltage = (float(resultDecimal) / 4096) * 4.096
print "Analog voltage at channel number ", channelNumber, " = ", resultVoltage
resultDecimal = (resultTripleByte[1] * (2 ** 8)) + (resultTripleByte[2])
resultVoltage = (float(resultDecimal) / 4096) * 4.096
print "Analog voltage at channel number ", channelNumber, " = ", resultVoltage
spiChannel.close()
time.sleep(0.1)
# ftprint.PrintDoubleSpaceLine("*** Stop testing MCP3208 ***")
def TestMcp3208v01(): # v0.1 tlfong01 2013may27
ftprint.PrintDoubleSpaceLine("*** Start testing MCP3208 ADC ***")
spiGuzuntyPi = spidev.SpiDev()
spiGuzuntyPi.open(0, 1)
controlTripleByteSingleEndChannel0 = [0x06, 0x00, 0x00]
resultTripleByte = [0x00, 0x00, 0x00]
resultTripleByte = spiGuzuntyPi.xfer2(controlTripleByteSingleEndChannel0)
ftprint.PrintEightBitPattern("ADC output byte 0 = ", resultTripleByte[0])
ftprint.PrintEightBitPattern("ADC output byte 1 = ", resultTripleByte[1])
ftprint.PrintEightBitPattern("ADC output byte 2 = ", resultTripleByte[2])
resultDecimal = (resultTripleByte[1] * (2 ** 8)) + (resultTripleByte[2])
resultVoltage = (float(resultDecimal) / 4096) * 4.096
print "Analog voltage = ", resultVoltage
spiGuzuntyPi.close()
ftprint.PrintDoubleSpaceLine("*** Stop testing MCP3208 ***")
# *****************************************************************************
# Function - TestAdcMcp3201()
# Description -
# Sample call -
# *****************************************************************************
def TestMcp320101(): #v1.3 tlfong01 2013may23
ftprint.PrintDoubleSpaceLine("*** Start testing MCP3201 ADC ***")
spiGuzuntyPi = spidev.SpiDev()
spiGuzuntyPi.open(0, 1)
DummyDoubleByteList = [0x00, 0x00]
adcOutputDoubleByteList = [0x55, 0x55]
adcOutputDoubleByteList = spiGuzuntyPi.xfer2(DummyDoubleByteList)
ftprint.PrintEightBitPattern("ADC output byte 1 = ", adcOutputDoubleByteList[0])
ftprint.PrintEightBitPattern("ADC output byte 2 = ", adcOutputDoubleByteList[1])
adcDecimalValue = (adcOutputDoubleByteList[1] >> 1) + (adcOutputDoubleByteList[0] * (2 ** 7))
# adcAnalogVoltage = (float(adcDecimalValue) / 4096) * 4.10 # without half voltage divider
adcAnalogVoltage = ((float(adcDecimalValue) / 4096) * 4.10) * 2 # with half voltage divider
print "Analog voltage = ", adcAnalogVoltage
spiGuzuntyPi.close()
ftprint.PrintDoubleSpaceLine("*** Stop testing MCP3201 ***")
# *****************************************************************************
# Function - TestAdcMcp3201()
# Description -
# Sample call -
# Sample output -
# *** Start testing MCP3201 ADC ***
# ADC output byte 1 = 00001011
# ADC output byte 2 = 11111111
# Analog voltage 3.07299804687
# *** Stop testing MCP3201 ***
# *****************************************************************************
def TestMcp320102(spiChannel):
ftprint.PrintDoubleSpaceLine("*** Start testing MCP3201 ADC ***")
DummyDoubleByteList = [0x00, 0x00]
adcOutputDoubleByteList = [0x55, 0x55]
adcOutputDoubleByteList = spiChannel.xfer2(DummyDoubleByteList)
ftprint.PrintEightBitPattern("ADC output byte 1 = ", adcOutputDoubleByteList[0])
ftprint.PrintEightBitPattern("ADC output byte 2 = ", adcOutputDoubleByteList[1])
adcDecimalValue = (adcOutputDoubleByteList[1] >> 1) + (adcOutputDoubleByteList[0] * (2 ** 7))
# adcAnalogVoltage = (float(adcDecimalValue) / 4096) * 4.10 # without half voltage divider
adcAnalogVoltage = ((float(adcDecimalValue) / 4096) * 4.10) * 2 # with half voltage divider
print "Analog voltage = ", adcAnalogVoltage
ftprint.PrintDoubleSpaceLine("*** Stop testing MCP3201 ***")
def TestMcp320103(spiChannel, testTime, testCount):
ftprint.PrintDoubleSpaceLine("*** Start testing MCP3201 ADC ***")
for i in range(testCount):
DummyDoubleByteList = [0x00, 0x00]
adcOutputDoubleByteList = [0x55, 0x55]
adcOutputDoubleByteList = spiChannel.xfer2(DummyDoubleByteList)
time.sleep(testTime)
ftprint.PrintEightBitPattern("ADC output byte 1 = ", adcOutputDoubleByteList[0])
ftprint.PrintEightBitPattern("ADC output byte 2 = ", adcOutputDoubleByteList[1])
adcDecimalValue = (adcOutputDoubleByteList[1] >> 1) + (adcOutputDoubleByteList[0] * (2 ** 7))
# adcAnalogVoltage = (float(adcDecimalValue) / 4096) * 4.10 # without half voltage divider
adcAnalogVoltage = ((float(adcDecimalValue) / 4096) * 4.10) * 2 # with half voltage divider
print "Analog voltage = ", adcAnalogVoltage
ftprint.PrintDoubleSpaceLine("*** Stop testing MCP3201 ***")
# .END
# fongtoy v1.26 tlfong01 2013may28
ProgramTitle = "FongToy v1.26 tlfong01 2013may28"
import sys
import time
import smbus
import pdb
import spidev
import wiringpi
import wiringpi2
import RPIO as GPIO
from RPIO import PWM
from enum import Enum
from subprocess import call
import ftgpio
import ftprint
import ftspi
import ftiox
import fteeprom
import ftguzuntypi
import ftdemux
import fttest
import ftadc
# *** Main program ***
# *** Start program message ***
ftprint.StartProgram(ProgramTitle)
# *** Troubleshooting functions ***
# *** GPIO tests v1.3 tlfong01 2013may23 ***
# ftgpio.TestLed()
# ftgpio.TestBuzzer()
# ftgpio.TestButtonEchoBuzzer()
# ftgpio.TestButtonEchoLed()
# *** SPI Tests v1.3 tlfong01 2013may23 ***
# ftspi.TestSpiLoopBack(spiChannelNumber = 0, spiChipEnableNumber = 1, testDataByte = 0x55, testCount = 1000, testTime = 0.001)
# ftiox.TestMcp23s17BlinkLed(spiChannelNumber = 0, spiChipEnableNumber = 0, spiChipSubAddress = 0)
# fteeprom.TestWriteReadEepormDataByte(spiChannelNumber = 0, spiChipEnableNumber = 1, startAddress = 0x0410, testDataByte = 0x55)
# ftguzuntypi.TestGuzuntyPi4digit7segmentLedModule(spiChannelNumber = 0, spiChipEnableNumber = 1)
# ftdemux.TestSelectSpiSlaveDevice(spiChannelNumber = 0, spiChipEnableNumber = 0, spiIoxSubAddress = 0, spiSlaveDeviceNumber = 5)
# fttest.TestDemuxEeprom(mcp23s17SubAddress = 0, eepromDemuxAddress = 2, testStartAddress = 0x0123, testWriteDataByte = 0x5a)
# fttest.TestDemuxEeprom(mcp23s17SubAddress = 0, eepromDemuxAddress = 1, testStartAddress = 0x0123, testWriteDataByte = 0x3b)
# fttest.TestDemuxEeprom(mcp23s17SubAddress = 0, eepromDemuxAddress = 0, testStartAddress = 0x0123, testWriteDataByte = 0x3b)
# *** Current test functions ***
# ftiox.TestMcp23s17BlinkLed(spiChannelNumber = 0, spiChipEnableNumber = 0, spiChipSubAddress = 0)
# ftdemux.TestSelectSpiSlaveDevice(spiChannelNumber = 0, spiChipEnableNumber = 0, spiIoxSubAddress = 0, spiSlaveDeviceNumber = 5)
# fttest.TestDemuxEeprom(mcp23s17SubAddress = 0, eepromDemuxAddress = 0, testStartAddress = 0x0123, testWriteDataByte = 0x3b)
# fttest.TestDemuxEeprom(mcp23s17SubAddress = 0, eepromDemuxAddress = 1, testStartAddress = 0x0411, testWriteDataByte = 0x4c)
# fttest.TestDemuxGuzuntyClock(mcp23s17SubAddress = 0, guzuntyClockDemuxAddress = 2, secondCount = 10)
# fttest.TestMcp320103(testTime = 0.1, testCount = 10)
# fttest.TestMcp320103(testTime = 0.01, testCount = 100)
# fttest.TestMcp320103(testTime = 0.05, testCount = 50)
# fttest.TestMcp320103(testTime = 0.1, testCount = 1)
# ftspi.TestSpiLoopBackV01(spiChannelNumber = 0, spiChipEnableNumber = 1, testDataByte = 0x55, testTime = 0.001, testCount = 60000)
# ftadc.TestMcp320101()
# ftadc.TestMcp3208v01()
# ftadc.TestMcp3208v02(inputMode = 1, channelNumber = 0)
ftadc.TestMcp3208v03()
# *** Stop program message ***
ftprint.StopProgram()
#.END
.END
No comments:
Post a Comment